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Summary

Mesenchymal (MES) transformation is a hallmark of aggressive glioblastoma (GBM). Here we 

report the development of an unbiased method for computational integration of copy number 

variation, expression and mutation data from large datasets. Using this method we identified 

RHPN2 as a central genetic determinant of the MES phenotype of human GBM. Notably, 

amplification of the human RHPN2 gene on chromosome 19 correlates with a dramatic decrease 

in the survival of glioma patients. Ectopic expression of RHPN2 in neural stem cells and 

astrocytes triggered the expression of MES genes and promoted an invasive phenotype without 

impacting cell proliferation. Mechanistically, these effects were implemented through RHPN2-

mediated activation of RhoA, a master regulator of cell migration and invasion. Our results define 

RHPN2 amplification as a central genetic determinant of a highly aggressive phenotype that 

directs the worst clinical outcomes in GBM patients.

Introduction

Glioblastoma multiforme (GBM) is the most common malignant brain tumor and is 

characterized by rapidly dividing cells, resistance to apoptosis, robust angiogenesis and 

extensive invasion. The tendency for local invasion leads to wide dissemination within the 

normal brain tissue surrounding the tumor, and to the formation of new malignant foci (1). 

As a consequence, complete tumor resection is almost impossible, leading to inevitable 

recurrence after surgery (2). Growing molecular evidence suggests that effective therapies 
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against GBM should target the deregulated signaling pathways that promote cell migration 

and invasion (3, 4), highlighting the need to identify specific genes driving these functional 

abnormalities.

Malignant transformation in glioma results from the accumulation of genetic aberrations, 

leading to complex and heterogeneous tumor phenotypes (5). Studies of genomic 

characterization, including copy number alterations, gene expression, mutations and 

methylation have all been used to identify molecular subclasses of malignant glioma that 

could inform clinical outcome and predict response to therapy (6–8). The reported 

classifications of GBM have invariably recognized a mesenchymal (MES) gene expression 

signature in patients with poor clinical prognosis (6–8). The MES signature includes genes 

related to the extracellular matrix (ECM), cell adhesion, migration, and tumor angiogenesis. 

A second signature, the Proneural signature, was identified in patients with a more favorable 

clinical outcome (9). The Proneural signature is characterized by genes associated with 

neurogenesis and is negatively correlated with the MES signature. Further studies of adult 

and pediatric GBM described the existence of a third signature, the Proliferative one, which 

is enriched for cell proliferation genes and their expression is also associated with a poor 

clinical outcome (6, 10, 11). However, the relationship between the Proliferative signature 

and the other two signatures is not entirely clear.

Multiple transcription factors have been implicated in controlling the MES signature. Gene 

expression network analysis identified the transcription factors STAT3 and C/EBPβ as two 

genetically normal genes that drive the MES signature in GBM (12). More recently, it has 

been shown that the transcriptional co-activator TAZ promotes MES transformation in 

malignant glioma (13). However, beside genetic alterations of NF1 that are associated with a 

small subgroup of MES GBM (7), the genetic drivers of the MES signature in malignant 

brain tumors remain largely unknown. Furthermore, whereas previous studies identified 

transcription factors triggering MES gene expression, genetic and/or epigenetic changes in 

key signaling pathway molecules driving the MES phenotype in GBM have not been 

identified.

Here, we report on the development of Multi-Reg, a new algorithm that integrates copy 

number aberrations, expression, and mutation data towards identifying driver genes, and 

describe its application to data of human GBM collected by TCGA. A key feature of Multi-

Reg is that it associates each driver gene with the GBM subclass it induces. This approach 

identified Rhophilin 2 (RHPN2) as a novel driver gene of the MES signature. Experimental 

follow-up established that RHPN2 promotes the MES transformation of neural stem cells 

and increases migration and invasion in different glial cell models. Importantly, RHPN2 

amplification and overexpression correlate with a dramatic decrease in the survival of 

glioma patients, supporting the involvement of this protein in the most aggressive features of 

malignant glioma.

Danussi et al. Page 2

Cancer Res. Author manuscript; available in PMC 2014 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and Methods

Identification of Drivers

A detailed description of the computational algorithms used can be found in the 

Supplementary Methods section. The Multi-Reg algorithm was developed for this research, 

and the software is available at: http://www.c2b2.columbia.edu/danapeerlab/html/

software.html.

Cell lines and cell culture conditions

SF188, SNB19 and 293T cell lines were grown in DMEM plus 10% FBS (Gibco/BRL). 

Primary human astrocytes (Lonza Inc.) were grown in Astrocyte Medium (SciencCell). 

Mouse NSCs (clone C17.2)(14) were cultured in DMEM plus 10% heat-inactivated FBS 

(Gibco/BRL), 5% horse serum (Gibco/BRL) and 1% l-glutamine (Gibco/BRL). Neuronal 

differentiation of mouse NSCs was induced by growing cells in DMEM supplemented with 

0.5% horse serum.

Lentivirus infection

Lentiviral expression vectors pLOC RHPN2 and pLOC VEC; and lentiviral vectors carrying 

RHPN2 shRNAs were purchased from Thermo Scientific Open Biosystems. To generate 

lentiviral particles, each expression plasmid was co-transfected with pCMV-dR8.91 and 

pCMV-MD2.G vectors into human embryonic kidney 293T cells using Fugene 6 (Roche). 

Lentiviral infections were performed as previously described (15).

qRT–PCR and microarray analysis

RNA was prepared with RiboPure kit (Ambion), and used for first-strand cDNA synthesis 

using random primers and SuperScript II Reverse Transcriptase (Invitrogen). qRT–PCR was 

performed using Power SYBR Green PCR Master Mix (Applied Biosystems). Primers are 

listed in Supplementary Data, Table S1. qRT–PCR results were analysed by the ΔΔCT 

method (16) using 18S as a housekeeping gene.

RNA amplification for mouse array analysis was performed with Illumina TotalPrep RNA 

Amplification Kit (Ambion). One-and-a-half micrograms of amplified RNA was hybridized 

on Illumina Mouse ref8 v2 expression BeadChip according to the manufacturer’s 

instructions. Hybridization data was obtained with an iScan BeadArray scanner (Illumina) 

and pre-processed by variance stabilization and robust spline normalization implemented in 

the lumi package under the R-system (17).

Immunofluorescence

Cells were grown on polylysine (Sigma) treated glass cover slips and fixed with PBS 4% 

PFA for 15 min. Then, they were permeabilized (with PBS, 1% BSA, 0.1% Triton X-100, 

and 2% FCS) for 5 min and saturated with the blocking buffer (PBS, 1% BSA, and 2% goat 

serum) for 30 min. The primary and the following secondary antibodies were incubated at 

room temperature for 1 h. These were: SMA (mouse monoclonal, Sigma), βIII-tubulin 

(mouse monoclonal, Promega), fibronectin and Paxillin (mouse monoclonal, BD 

Biosciences), phospho-Cofilin (rabbit monoclonal, Cell Signaling), goat anti-mouse and 
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anti-rabbit Cy3 conjugated (Life Technologies). Actin cytoskeleton was stained with Alexa-

Fluor 568 Phalloidin (Life Technologies) and nuclei were visualized with DAPI 

(Invitrogen). Images were acquired with Nikon A1R MP confocal microscope. 

Quantification of the fibronectin intensity staining in mouse NSCs was performed using 

NIH Image J software (http://rsb.info.nih.gov/ij/).

Cell assays

Wound healing assay—Exponentially growing cells were seeded (1.5 × 105) in a 24-

well plate to create a dense monolayer and then scratched with a 200 ml tip. Serum-free 

medium was added after washing in PBS, and wound closure was monitored by taking 

pictures over time for 24 h.

Invasion assay—2 × 104 cells were added to the upper compartment of a 24-well 

BioCoat Matrigel Invasion Chamber (BD Bioscences) in serum-free DMEM. After 24 h, 

invading cells were fixed, stained with crystal violet 0.1% and counted. In invasion 

inhibition assays RhoA inhibitor I (C3 exoenzyme; Cytoskeleton, Inc.) at a concentration of 

1 µg/ml was used.

Proliferation assay—Cell proliferation was evaluated by 3-(4,5-dimethyl-2- 

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. 5,000 cells/well were seeded 

in 96-well plates. At the indicated times, MTT solution (Sigma) in complete medium (0.28-

mg/ml final concentration) was added and incubated at 37°C for 4 h. The medium was 

discarded, and the formazan salts were dissolved in 4 mM HCl, 0.1% NP40 in isopropanol. 

The colorimetric substrate was measured and quantified at 560 nm in an enzyme-linked 

immunosorbent assay plate reader.

RhoA activity assay

Exponentially growing cells were serum starved for 24 h, detached with Accutase solution 

(Innovative Cell Technologies Inc.) and adhered to FN-coated dishes (10 µg/ml; Sigma) for 

30 min. Then, cells were lysed and 300 µg of protein was tested in a rhotekin-RBD bead 

pulldown assay (Rho Activation Assay Biochem Kit, Cytoskeleton Inc.) for 1 h at 4°C. 

After thorough washes, the samples were boiled for 5 min in Laemmli buffer to detach 

active GTP-bound Rho and then loaded on 4–20% SDS-PAGE gels (Invitrogen) and 

immunoblotted using an anti-RhoA antibody.

Results

The Multi-Reg algorithm

An emerging trend in cancer treatment is drugs that target genes and signaling pathways that 

are only activated in specific cancer cells (18, 19). However, genomics has revealed 

incredible heterogeneity in cancer, which makes identification of specific genes contributing 

to cancer progression (driver genes) difficult. Targeting novel drivers is especially important 

in GBM, since the median survival with conventional therapy is 12–15 months (5).
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A key challenge in identifying driver genes from DNA copy number is that amplification 

and deletions frequently involve large regions of DNA, each consisting of multiple genes. 

To pinpoint the driver genes within such genomic regions, we previously developed 

CONEXIC (20), a computational algorithm that integrates copy number and gene expression 

data, to identify driver genes and connect these to their expression signatures. A key 

limitation to our previous approach is that CONEXIC can only identify the one dominant 

driver for each expression signature. However, multiple drivers can contribute to the same 

effect, sometimes acting in parallel. For example, almost all GBM patients have activated 

Receptor Tyrosine Kinase signaling and disrupted p53/RB signaling, but each patient could 

have a different combination of deletions, amplifications and mutations in some of the many 

genes known to influence these signaling pathways (21).

We therefore developed Multi-Reg, based on a similar framework as CONEXIC, but 

seeking multiple regulators for each phenotype. This improvement was achieved by a 

change in the main statistical model. While CONEXIC and other methods begin from gene 

expression signatures and attempt to find a driver for each one (22), Multi-Reg begins from 

candidate drivers and then finds a signature associated with each driver.

Multi-Reg begins from regions that are significantly altered in copy number, either 

amplified or deleted (Fig. 1A). It identifies all genes in each region as candidate driver genes 

(Fig. 1B). Then for each candidate driver it generates its gene expression signatures. i.e. the 

list of candidate target genes associated with this driver. Comparing the expression 

signatures between drivers from the same region allows us to focus on significant drivers 

(Fig. 1C). The final step of the analysis involves assigning the expression signature of each 

predicted driver to a distinct subtype of GBM (MES, Proliferative, Proneural). This leads to 

the testable hypothesis that some genes altered in copy number are drivers of distinct 

biological functions and the same region may contain multiple drivers that effect distinct 

GBM subtypes (Fig. 1D). More details on the algorithm can be found in the Supplementary 

Methods.

Identifying drivers in glioblastoma

We analyzed gene expression and copy number measurements from 136 samples (corrected 

for batch effects) of primary GBM from the TCGA cohort (21), see Supplementary Methods 

for details. We identified 238 regions that are recurrently altered in copy number using a 

modified version of GISTIC called JISTIC (23) and generated a list of 747 candidate drivers 

contained within these regions. Next, we applied Multi-Reg to integrate copy number with 

gene expression and mutation data to pinpoint the top ranking candidate drivers and their 

targets. Applying Multi-Reg resulted in the identification of 83 high-scoring drivers, which 

associate with a total of 12125 targets.

Multi-Reg identified many of the well-known oncogenes and tumor suppressors in GBM, 

including EGFR, NF1, CKDN2B, p53, PIK3CA, RB1, PTEN (21), and more (see Table S2 

for complete list). The successful identification of known key brain tumor drivers increases 

our confidence in the novel predictions discussed below. To determine the functional 

properties of the identified drivers, we compared the gene expression signatures previously 

associated with MES, Proneural and Proliferative GBM subtypes (12) with the gene 
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modules associated with each driver identified by Multi-Reg, using hypergeometric 

enrichment.

In addition to well-known drivers of GBM, we identified new drivers that regulate the GBM 

signatures. Overall, out of the 83 drivers we identified, 23 drivers were associated with the 

MES, 14 with the Proliferative and 11 with the Proneural signature (Table S2 for all drivers 

and see Fig. 2A and B for a schematic representation of these 48 drivers and the 

chromosomal location of the drivers associated with the MES signature). Thus our algorithm 

is able to identify drivers for each of the three crucial GBM subtypes.

Multi-Reg identifies RHPN2 as an amplified driver of the MES subclass

We focused on the genes implicated in the Mesenchymal subtype, since this subtype has the 

worst clinical prognosis. We sorted the 23 genes associated with the MES signature 

according to q-value. The top three genes, ERBB2, COL1A1 and ITGB3, were mutated, but 

they did not harbor copy number changes. The next two top genes, C5orf32 and RHPN2, 

were both amplified and overexpressed. The RHPN2 gene is located on Chr19q12-q13 and, 

according to data from TCGA and Rembrandt databases, it is amplified and overexpressed 

in >30% of gliomas (Fig. S2). This gene codes for a RhoA-binding protein, called Rhophilin 

2, which is not well characterized. We focused further experiments on RHPN2, given its 

potential biological function as regulator of Rho GTPases (24), which are key factors for cell 

migration and invasion, two hallmarks of the MES phenotype.

To further investigate the genes associated with this driver, we used Gene Ontology 

enrichment to analyze the function of predicted up- or down-regulated target genes 

identified by Multi-Reg for RHPN2 (Fig. 3). We found that RHPN2 up-regulated genes were 

significantly enriched for plasma membrane, extracellular region, transmembrane 

transporter activity, regulation of protein kinase cascade and cell adhesion (Fig. 3A and B), 

indicating that RHPN2 regulates the expression of genes involved in cell-ECM interactions, 

which is consistent with the induction of a MES phenotype. Genes down-regulated by 

RHPN2 were significantly enriched for the Gene Ontology terms such as development, 

neuron projection morphogenesis, regulation of gene expression and glial cell differentiation 

(Fig. 3C and D) and for the Proneural signature (q-value = 5.33 × 10−13). Thus, the Gene 

Ontology results match the predictions based on GBM signatures, RHPN2 induces a MES 

phenotype while repressing neuronal and glial cell differentiation.

A survival study performed in the Rembrandt database supported the importance of RHPN2 

in GBM and encouraged us to investigate the role of this protein. According to this analysis, 

RHPN2 amplification and overexpression predicts a markedly poor clinical outcome of 

glioma patients (Fig. 3E). Among the top ranked drivers selected by Multi-Reg and 

associated with the MES genes, RHPN2 displayed the strongest statistical association with 

patient survival (data not shown).

To experimentally validate the new driver for GBM aggressiveness inferred by the Multi-

Reg algorithm, we performed biological assays, overexpressing and/or silencing RHPN2 in 

different cell models. We started by testing the expression of specific genes and proteins that 
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are representative of GBM phenotypes, performed functional assays and finally explored in 

detail the mechanism of action of RHPN2.

RHPN2 triggers mesenchymal transformation of Neural Stem Cells

We used recombinant lentiviruses to express RHPN2 in C17.2 (Fig. S3A), a mouse 

immortalized neural stem cell (NSC) line previously used to investigate MES transformation 

of high-grade glioma (12). Consistent with the computational predictions, microarray gene 

expression analyzed by GSEA showed that expression of RHPN2 in C17.2 led to significant 

enrichment of MES genes (Fig. 4A; p-value = 0.0003). This result was validated by 

quantitative-RT-PCR of a representative panel of MES genes. Acta1, Acta2, Ctgf, Tnc, 

SerpinE1, Itga7, Osmr and C1rl were up-regulated after ectopic expression of RHPN2 (Fig. 

4B). In addition, RHPN2 triggered the expression of MES proteins as shown by 

immunostaining for the MES markers fibronectin (FN) and smooth muscle alpha actin 

(SMA, encoded by the Acta2 gene; Fig. 4C–F; p-value < 1×10−4).

Next, we asked whether RHPN2 altered the default neuronal differentiation pathway of 

NSCs. Normally, C17.2 NSCs undergo neuronal differentiation upon mitogen removal (14). 

However, ectopic expression of RHPN2 conferred a fibroblast-like morphology (Fig. 4G) 

and inhibited neuronal differentiation, as evidenced by a decrease in βIII-tubulin 

immunostaining (Fig. 4H–I, p-value < 1×10−4). These findings suggest that RHPN2 blocks 

neuronal differentiation by reprogramming NSCs towards an aberrant MES lineage.

RHPN2 increases invasion in Neural Stem Cells and glioma cell lines

To elucidate the full scope of the biological phenotypes triggered by RHPN2, we used both 

gain and loss of function experiments. Based on the Multi-Reg predictions about the MES 

phenotype, we focused on invasion and migration assays. In addition to mouse NSCs we 

used primary Human Astrocytes (HA), candidate cells-of-origin for GBM, and two human 

glioma cell lines, SF188 and SNB19, which display the lowest and highest RHPN2 

expression levels among several glioma cell lines respectively (Fig. S3B). One of the most 

distinguishing features of MES transformation is increased invasiveness (12). Indeed, 

expression of RHPN2 in C17.2 cells promoted invasion through the extracellular matrix in a 

Matrigel invasion assay (Fig. 5A) and enhanced cell migration in a wound assay (Fig. 5B). 

Interestingly, ectopic expression of RHPN2 (Fig. S3C) resulted in dramatic changes of the 

morphology of HA. Compared to control vector infected cells, HA expressing RHPN2 

acquired an elongated and spindle-shaped morphology (Fig. S3D). Notably, these changes 

were associated with increased ability to invade through Matrigel (Fig. 5C; p-value < 0.001). 

A significant gain of invasion was observed also when RHPN2 was introduced in SF188 

cells (Fig. S3E and 5D, p-value < 1×10−5). Conversely, silencing of RHPN2 in the human 

glioma cell line SNB19 by 4 different shRNA sequences (Fig. S3F) significantly decreased 

the invasive capacity through Matrigel (Fig. 5E; p-value < 0.005). Neither the ectopic 

expression of RHPN2 in HA and SF188 or its silencing in SNB19 affected cell proliferation 

(Fig. 5F–H).

Altogether these data indicate that RHPN2 overexpression is sufficient and necessary to 

drive transformation of glioma cells along the MES lineage.
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RHPN2 promotes invasion by activation of RhoA

We sought to identify the molecular mechanisms by which RHPN2 amplification/

overexpression generates MES transformation of glial cells. To address this question, we 

first asked whether RHPN2 affects RhoA activity in primary human astrocytes (HA). We 

selected astrocytes as appropriate cellular models for the next series of experiments, since 

they are candidate cells-of-origin for GBM and display low rates of invasion. Ectopic 

expression of RHPN2 (Fig. S3C) resulted in more than 4-fold increase of RhoA activity 

(measured as RhoA-GTP), when compared with control cells (Fig. 6A).

Next, we asked whether the increase in RhoA activity by RHPN2 affected organization of 

the actin cytoskeleton, a key determinant of cell migration and invasion. After 30 min of 

adhesion on fibronectin, vector-transduced HA displayed a well-organized network of actin 

stress fibers that were distributed in the whole cell body (Fig. 6B, upper panel). RHPN2-

expressing cells manifested a profound reorganization of the actin cytoskeleton, 

characterized by lack of stress fibers and accumulation of actin at the cell border in a ring-

shaped manner, resembling a non-polarized lamellipodium (Fig. 6B, lower panel). 

Immunostaining for Paxillin, a protein implicated in cell migration (25), showed the 

expected localization of this protein at the focal contacts in control cells (Fig. 6B, upper 

panel). However, in HA transduced with the RHPN2-expressing lentivirus Paxillin formed 

concentric circles at the cell edge, co-localizing with actin (Fig. 6B, lower panel). Moreover, 

the aberrant activation of the RhoA pathway by RHPN2 resulted in the accumulation of 

membrane speckles of phospho-Cofilin (pCofilin; Fig. 6B), a downstream effector of RhoA 

(26).

Finally, we asked whether the increased RhoA activity induced by RHPN2 was responsible 

for the enhanced cell invasion. Treatment of vector and RHPN2-expressing cells with a 

specific RhoA inhibitor (named RhoA inhibitor I or C3 exoenzyme) completely abrogated 

RhoA activity after 6 hours (Fig. 6C). An invasion assay revealed that inhibition of RhoA 

did not affect the basal invasion capacity of HA transduced with the control lentivirus, but it 

completely reversed the RHPN2-induced invasion (Fig. 6D; p-value < 3×10−5). Together, 

these results indicate that activation of RhoA is specifically recruited to enhance invasion of 

HA following ectopic expression of RHPN2.

Discussion

Malignant transformation in gliomas results from the accumulation of genetic aberrations 

and the deregulation of several key signaling pathways (5). The advent of genome-wide 

profiling studies of one data type at a time led to the identification of certain driver genes 

involved in glioma malignancy, but additional important insights can be gained by 

integrating multiple data. Existing methods for integration have generally found one 

regulator for a given gene expression signature (20, 22). Recent studies have shown success 

in identifying drivers based on copy number and expression, but only resulted in a limited 

number of targets (approximately 500 targets in total)(27).

Here, we presented a new algorithm called Multi-Reg, which improves on these existing 

methods, finds multiple regulators for genes identified as targets, and associates each driver 
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gene with a relevant phenotype. Finding multiple regulators for each phenotype is a more 

accurate reflection of the biology of cancer, where many amplifications, deletions and 

mutations can influence the same signaling pathway (21).

We applied the Multi-Reg algorithm to a GBM dataset, and related our results to known 

subtypes of glioma. In addition to novel drivers, we correctly identified previously known 

drivers, thus increasing our confidence in our results. The novel drivers we identified were 

involved in all three glioma subtypes, including Proliferative, Proneural and MES.

Among all the genes selected by Multi-Reg, we focus on those that induce the MES 

phenotype, since they should correlate with a bad prognosis and could represent ideal 

potential therapeutic targets. In particular, we decided to deeply investigate RHPN2, a gene 

located on chromosome 19q12–13, which has been described as RhoA binding protein, but 

its biological function remained obscure (24, 28, 29). Importantly, Multi-Reg identified 

RHPN2, correctly predicted its resulting phenotype as a MES subclass inducer and let us 

shed light on its novel functional role as regulator of invasion in glioma. In accordance with 

the computational prediction, RHPN2 ectopic expression in mouse NSCs induced the 

expression of MES genes, prevented neuronal differentiation and promoted invasion and 

migration, thus operating as a bona-fide master regulator of MES transformation. Notably, 

RHPN2 expression was not sufficient for neoplastic transformation and did not affect other 

cell functions, such as proliferation. Altogether, these results indicate that RHPN2 

amplification and overexpression are not implicated in glioma tumorigenesis, but most 

likely they represent a late event in glioma progression and significantly contribute to worse 

prognosis of the patients harboring this genetic aberration, as confirmed by a survival 

analysis (Fig. 3E).

It is important to note that pooled RNAi screens (30), a popular genome-wide technique that 

is focused on growth and proliferation, would not detect RHPN2 as a driver, since RHPN2 

does not effect proliferation. Multi-Reg's ability to connect drivers with their phenotypes 

was a crucial feature in identifying the correct follow-up experiments and importantly it 

unveiled a new biological function of RHPN2.

We investigated in depth the mechanism of action of RHPN2 and demonstrated that this 

protein promotes MES transformation by activating RhoA. Increased levels of RhoA-GTP 

and pCofilin, a downstream effector of RhoA, were detected in RHPN2-expressing cells. 

Notably, the invasive phenotype was reversed upon treatment with a specific RhoA 

inhibitor, indicating that the RHPN2-induced MES transformation resulted from aberrant 

RhoA activation.

RhoA is a member of the Rho GTPases, a family of proteins that play essential roles in 

multiple biological processes. In particular, their ability to regulate cytoskeletal dynamics, 

cell adhesion and cell migration points to a central role in cancer cell invasion and 

metastasis (31). The involvement of Rho family GTPases in glioma malignancy and 

invasion has been previously described, but the specific role of RhoA has remained 

controversial (reviewed by Khalil and El-Sibai (32)). Goldberg and Kloog (3) showed that 

glioma cell migration was blocked following treatment with a Ras inhibitor, and that this 
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effect was associated with decreased Rac-1 and increased RhoA activity. In contrast, 

Manning and colleagues (33) reported that blocking RhoA signaling could inhibit 

lysophosphatidic acid-induced migration in glioma cells. Our findings showed that RhoA 

activation is necessary for RHPN2 induced glioma invasion, matching more closely the role 

of RhoA described in other cancer models (34) and highlighting RhoA as a potential 

therapeutic target of GBM. Our study also underlines the critical need to enhance the efforts 

to produce specific RhoA inhibitors for therapeutic applications, especially for tumors that 

lack effective therapies, such as GBM.

In conclusion, by developing a new integrated analysis and applying it to GBM, we 

identified a very frequent genetic aberration in this cancer that drives a gain in malignancy 

through the activation of a key regulator for the MES phenotype. Notably, this is the first 

report describing a MES driver that does not belong to the Transcription Factor category and 

unveiling the related molecular pathway. By disclosing the role of RhoA in MES 

transformation and glioma invasiveness, our work sets the stage for new therapeutic tools in 

mesenchymal GBM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Principles of the algorithm Multi-Reg
(A) Copy Number allows us to identify specific amplified (in orange) or deleted (in blue) 

chromosomal regions.

(B) Each chromosomal region includes multiple genes (genes are identified as g1..g5 for the 

amplified region and g6..g10 for the deleted region).

(C) Combining expression allows us to focus on fewer drivers in each region. We can 

measure the effect each gene has on expression (see Supplementary Materials for more 

details), and identify candidate drivers. The purple bars represent the number of targets 
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identified. Genes in the region with more than a minimum of targets are identified as the 

candidate driver for that region (arrows).

(D) The overlap between the targets of each driver with known GBM signatures allows us to 

identify the function of the driver. If most of the targets of a driver overlap with the 

mesenchymal signature (MES; left), we will assume the driver contributes to the 

mesenchymal phenotype. Similarly, if the targets of the driver overlap with the Proneural 

signature (PRON; right), we will assume it contributes to the proneural phenotype.

Danussi et al. Page 14

Cancer Res. Author manuscript; available in PMC 2014 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Multi-Reg identifies multiple regions and genes
(A) Graphical representation of chromosomes with amplified and deleted regions (orange 

and blue, respectively). Genes identified as candidate drivers are noted and colored 

according to their signature, Mesenchymal (brown), Proneural (green) and Proliferative 

(pink).

(B) List of driver genes identified by MultiReg and significantly associated with a GBM 

signature class, sorted by class and q-value. In the table chromosomal location, gene symbol, 

GBM signature and q-value are reported. * EGFR represses proneural with the q-value 

listed.
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Figure 3. RHPN2 module analysis
(A) Module of RHPN2 up-regulated genes generated by Multi-Reg.

(B) Gene Ontology (GO) enrichment for RHPN2 up-regulated genes. RHPN2 up-regulated 

genes are related to cell-ECM interactions.

(C) Module of RHPN2 down-regulated genes generated by Multi-Reg

(D) GO enrichment for RHPN2 down-regulated genes. RHN2 down-regulated genes are 

related to glial cell differentiation.

(E) Survival analysis of glioma patients from Rembrandt database. Each plot represents the 

probability of survival of glioma patients in correlation with CNV (copy number variation ≥ 

2), EXP (gene expression ≥ 2) and the combination of both.
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Figure 4. RHPN2 induces MES transformation
(A) GSEA analysis of MES gene enrichment on the gene expression profile of C17.2 upon 

RHPN2 overexpression. The bar-code plot indicates the position of the MES genes; red and 

blue indicate a positive and a negative correlation, respectively (p- value = 0.0003).

(B) qRT–PCR of MES targets in C17.2 cells. Mean values ± SD of three experiments are 

reported.

(C) Immunofluorescence analysis of fibronectin (FN, red) on C17.2 expressing the control 

pLOC vector (VEC) and RHPN2. Nuclei are stained with DAPI (blue). Scale bar: 50 µm.
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(D) ImageJ quantification analysis of C17.2 produced FN. Mean values ± SD of 20 fields 

per each condition, are reported. *p-value < 1×10−4.

(E) Immunofluorescence analysis of smooth muscle actin (SMA, red) on C17.2. Nuclei are 

stained with DAPI (blue). Scale bar: 50 µm.

(F) Quantification analysis of SMA-positive C17.2 cells. Mean values ± SD of 10 fields per 

each condition, are reported. *p-value < 1×10−4.

(G) Morphology of C17.2 cultured in absence of mitogens for 5 days. Scale bar: 50 µm.

(H) Immunofluorescence for βIII-tubulin (red) of C17.2 cells after 5 days of differentiation. 

Scale bar: 50 µm.

(I) Quantification of C17.2 βIII-positive cells. Mean values ± SD of 5 fields per each 

condition, are reported. *p-value < 1×10−4.
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Figure 5. RHPN2 promotes cell invasion
(A) Quantification of C17.2 invading cells. **p-value < 1×10−3.

(B) Microphotographs of C17.2 wound healing assay. Scale bar: 100 µm.

(C, D) Quantification of primary Human Astrocytes (HA) and SF188 invading cells at 24 

hrs. **p-value < 1×10−3; ***p-value < 1×10−5.

(E) Quantification of SNB19 invading cells at 24 hrs, upon RHPN2 silencing. *p-value < 

0.005.
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(F–H) Proliferation of HA, SF188 and SNB19 cells, upon overexpression or silencing of 

RHPN2.

All graphs in this figure show mean values and standard deviation of three repeats.
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Figure 6. RHPN2 induces a MES phenotype by triggering RhoA activation
(A) Rho activity assay of human astrocytes (HA) after 30 min of adhesion on Fibronectin 

(FN).

(B) Actin, Paxillin and pCofiln immunofluorescence staining (red) of HA after 30 min of 

adhesion on FN. Nuclei are stained in blue. Scale bar: 10 µm.

(C) Rho activity assay of HA. Cells were serum starved for 24 hrs and treated with 1 µg/ml 

of the RhoA inhibitor I for 6hrs. Untreated (ctrl) and treated (RhoA inh I) HA were then 

plated on FN for 30 min and harvested for RhoA analysis.

(D) Quantification of HA invading cells at 24 hrs. Cells were treated with 1 µg/ml of the 

RhoA inhibitor I. Mean values ± SD; n = 3; **p-value < 3×10−5.
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